

Schwarzschild metric [Wikimedia]

EXERCISE 10.1: PRINCIPLE OF LEAST ACTION

The electromagnetic current is a 3-form **J** which is related to the usual charge density ρ and the current $\vec{J} = (J_x, J_y, J_z)$ by

$$(\star \mathbf{J})^{\sharp} = \rho \partial_t + J_x \partial_x + J_y \partial_y + J_z \partial_z$$
.

The action S of the electromagnetic field contained in a 4-volume G of the Minkowski space is given by $S = \int_G \mathbf{L}$, where **L** is a 4-form called *Lagrange density*. In electrodynamics, it is given by

$$\mathbf{L} := -\frac{1}{2} \, \mathrm{d} \mathbf{A} \wedge \star \, \mathrm{d} \mathbf{A} + \mathbf{A} \wedge \mathbf{J}.$$

Now consider an infinitesimal variation of the electromagnetic field by $\mathbf{A} \to \mathbf{A} + \epsilon \mathbf{Q}$, where \mathbf{Q} is a 1-form and where $0 < \epsilon \ll 1$ is small. The principle of least action tells us that S does not change to lowest order in ϵ , provided that \mathbf{Q} vanishes on the boundary ∂G .

(a) Show that the stationarity of S leads us to the condition (2P)

$$\int_{G} \left(- \mathrm{d}\mathbf{Q} \wedge \star \mathrm{d}\mathbf{A} + \mathbf{Q} \wedge \mathbf{J} \right) = 0. \qquad \forall \mathbf{Q}$$

(b) Use Stokes theorem to show that $\int_G (d\mathbf{Q} \wedge \star d\mathbf{A}) = \int_G (\mathbf{Q} \wedge d \star d\mathbf{A})$, using the fact that $\mathbf{Q}|_{\partial G} = 0$. Insert this relation into the result of (f) to show that (2P)

$$\int_{G} \mathbf{Q} \wedge \left(-\mathbf{d} \star \mathbf{dA} + \mathbf{J} \right) = 0 \qquad \forall \mathbf{Q} \text{ with } \mathbf{Q} \big|_{\partial G} = 0$$

(c) Show that the above result leads to the inhomogeneous Maxwell equations (1P)

$$\mathbf{d} \star \mathbf{F} = \mathbf{J}.$$

(d) Show that with the Lorenz gauge $d^{\dagger} \mathbf{A} = 0$ the inhomogeneous Maxwell equations imply the wave equation $\Box \mathbf{A} = \star \mathbf{J}$, where $\Box = d d^{\dagger} + d^{\dagger} d$ is the Laplace-de-Rham operator in Minkowski space. (1P)

(6P)

EXERCISE 10.2: TRAJECTORIES IN THE SCHWARZSCHILD METRIC (6P)

The line element of the Schwarzschild space time in vacuum $(T_{\mu\nu} = 0)$ in Schwarzschild coordinates is given by

$$ds^{2} = -\left(1 - \frac{2GM}{r}\right) dt^{2} + \left(1 - \frac{2GM}{r}\right)^{-1} dr^{2} + r^{2} d\Omega^{2}.$$

- (a) The Lagrange function of a free particle with mass m is given by $L = -\frac{m}{2}u^{\mu}u_{\mu}$. Use the Euler-Lagrange equations to show that the corresponding canonical momenta $p_t = \partial L/\partial \dot{t}$ and $p_{\phi} = \partial L/\partial \dot{\phi}$ are conserved. (1P)
- (b) Show that the initial conditions $\tau = \tau_0$, $\theta(\tau_0) = \pi/2$, and $\dot{\theta}(\tau_0) = 0$ ensure planar motion, meaning that $\theta = const$ for all τ . (1P)
- (c) If the trajectory is parametrized by the proper time (eigenzeit), then $g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu} = -1$. Show that this relation can be rewritten as $\frac{1}{2}m\dot{r}^2 + V(r) = E$ and determine V(r) and E. To what extent does V(r) differ from the corresponding potential in the Newtonian theory? Sketch both potentials qualitatively. (2P)
- (d) Consider a particle falling freely in radial direction with the initial conditions $\tau = \tau_0, \dot{r}(\tau_0) = \dot{\phi}(\tau_0) = \dot{\theta}(\tau_0) = t(\tau_0) = 0$. How much eigenzeit elapses until the particle reaches the Schwarzschild radius? (2P)

 $(\Sigma = 12P)$

To be handed in on Wednesday, January 08, at the beginning of the tutorial.